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ing the latter, we show that hypothesized early-universe Big Bang conditions allow for neutrino radiation
cooling and provide an energy loss-mechanism for subsequent neutrino condensation.
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1. Introduction

The total instantaneous radiated power [1] of a particle carrying
charge Q is the Larmor formula for non-relativistic motion

PQNR ¼
2
3

Q 2

c3 j
_~v j2 ð1Þ

and the Liénard formula for relativistic motion

PQR ¼
2
3

Q 2

c
c6 ð _~bÞ

2
� ð~b� _~bÞ

2
� �

ð2Þ

In this paper, we use Gaussian units with c the speed of light,

c the usual Lorentz factor 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð~bÞ

2
q

, dots _ signifying time-

derivatives and ~b � ~v=c, where ~v is the particle’s velocity. Also,
the neutrinos considered here are Dirac neutrinos with magnetic
dipole moments ~l – 0. In this paper, ~l will always denote rest
frame magnetic moments. Using the same convention as [1], the
electromagnetic field notation will be: unprimed quantities such

as ~B denotes laboratory quantities (here a laboratory magnetic

field) and the 0, such as ~B0, denotes rest frame quantities (here a rest
frame magnetic field). We will find that the corresponding formu-
lae for radiation power losses of magnetic dipoles are much more
complicated than Eqs. (1) and (2) of charged particles because

dQ
dt
¼ 0 ðcharge conservationÞ ð3Þ
_~l �
dt

– 0 ðspin precessionÞ ð4Þ

In the early universe, once cosmological neutrinos decouple
from matter, conventional wisdom posits that they would then
lose energy adiabatically from the cosmic expansion [2]. However,
neutrinos will still interact with early-universe magnetic fields ~B.
Such primordial fields are thought to be non-uniform (fluctuating)
and large j~Bj > 4:4 � 1013 G [3,4]. We will show that these early-
universe magnetic field conditions can allow efficient neutrino
cooling after they decouple from matter.
2. Non-relativistic instantaneous radiated power

Reference [1] gives the energy radiated per unit solid angle per
unit frequency interval for a moving magnetic dipole moment (~n is
the look unit vector):

d2I
dxdX

¼ x4

4p2c3

Z
dt ~n� ½~lþ~n� ð~b�~lÞ�eixðt�~n�~rðtÞ=cÞ

����
����
2

ð5Þ

Integration by parts yields the time-dependent vector potential
~AðtÞ

~AðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4pc3
p d2

dt2 fn̂� ~lþ n̂� ½n̂� ð~b�~lÞ�g ð6Þ

Doing the differentiation, we get our first result, which is the non-
relativistic angular distribution

dPMNR

dX
¼ 1

4pc3 n̂� €~lþ n̂� n̂� €~b�~lþ 2 _~b� _~lþ~b� €~l
h ih i��� ���2 ð7Þ
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Interestingly, the ‘jerk’ €~b contributes, which is not the case for
an accelerated charge. Altogether, there are 10 separate terms
(compare to Eq. (1) above) for the instantaneous radiation of a
non-relativistically moving magnetic dipole, obtained by integrat-
ing Eq. (7)

PMNR ¼
2

3c3
€~l2 þ €~b�~lþ 2 _~b� _~lþ~b� €~l

� �2
� �

ð8Þ

Eq. (8) will be applied to solar neutrons to see if magnetic dipole
moment radiation is a factor in their detection in the inner parts of
the solar system.

3. Non-relativistic spin and force equations

We are interested in solar neutrons associated with large flares.
A typical energy is 8–10 MeV [5]. The neutrons can be modeled as
originating near the solar limb and going through a high magnetic
field �104 G (i. e. about 1 Tesla) where such strength extends to
about one solar diameter away. The question is whether or not
these neutrons radiate energy away before they leave the sun’s
environment. Because of the tenuous low density plasma that they
transit and because of their low interaction nuclear cross section,
solar neutrons can be considered to be a collisionless particle.
However, the neutron will experience forces due to the solar mag-
netic field.

The force equation is

~F ¼ ~rð~l � ~B0Þ ð9Þ

where, as already noted, ~l and ~B0 are rest frame fields.
Working this out gives

m €~x ¼ ð~l � ~rÞ~B0 þ ð~B0 � ~rÞ~lþ~l� ð~r� ~B0Þ þ ~B0 � ð~r�~lÞ ð10Þ

We need the jerk, so we have to take the time derivative of Eq.
(10) to obtain:

m~x
...

¼ ð _~l � ~rÞ~B0 þ ð~l � ~rÞ _~B0 þ ð _~B0 � ~rÞ~lþ ð~B0 � ~rÞ _~lþ _~l� ð~r

� ~B0Þ þ ~l� ð~r� _~B0Þ þ _~B0 � ð~r� ~lÞ þ ~B0 � ð~r� _~lÞ ð11Þ

The next vector equation is the torque equation (no collisional
relaxation term present and since we take ~v � 0)

~l� ~B0 ¼ d~s
dt

ð12Þ

where~s is the spin of the neutron. The connection between the spin
~s and the magnetic moment ~l is ~l ¼ u~s where u is a constant. So the
third vector equation is

_~l ¼ u~l� ~B0 ð13Þ

Finally, we need €~l given by taking the time derivative of Eq. (13):

€~l ¼ u2 ð~B0 �~lÞ~B0 � ~B02~l
n o

þ u~l� _~B0 ð14Þ
4. Solar neutron energy loss

The neutron magnetic moment [6] is lNeu ¼ �1:9130427lN

where lN ¼ e�h
2mP c is the nuclear magneton. If we assume that the

solar magnetic field has small variations and fluctuations, then

only the first term in Eq. (8) contributes, with €~l given by Eq.
(14), which has the maximum value

j €~lj2 6 u2~B02lNeu

� �2
ð15Þ

The space (‘laboratory’) frame of one Tesla for the sun’s environ-
ment translates to a higher strength value in the neutron’s rest
frame by a c. Since the neutrons are non-relativistic (c � 1), we
neglect any Lorentz transformation involved. Working this out for
a nominal one Tesla ~B0, we find

Pneutron
NR � 1:625� 10�33 eV=sec ð16Þ

Even if we include a non-stationary solar magnetic field component
(therefore other terms in Eq. (8) come into play), neutron radiation
losses are completely negligible for this problem.

5. Relativistic instantaneous radiated power

From the last section, it is obvious that non-negligible magnetic
moment radiation requires great magnetic field strengths and
ultra-relativistic particle motion. PMNR, Eq. (8), in Section 2 and
the torque equation, Eq. (12), and force equation, Eq. (9), both in
Section 3, all have to be generalized. In this section, we present
the generalization of the instantaneous power radiated.

The instantaneous power is a Lorentz scalar, so time is replaced
with proper time, a scalar. Lorentz tensors come into play, but they
have to be contracted together to get a scalar.

The formula clearly has two separate quantities reflecting the
two separate terms in the non-relativistic form. The first term is
the double time derivative of the magnetic moment. Magnetic
moments are entries of the anti-symmetric dipole tensor Dlm [7].

Dlm ¼

0 d1 d2 d3

�d1 0 l3 �l2

�d2 �l3 0 l1

�d3 l2 �l1 0

0
BBBBBB@

1
CCCCCCA

ð17Þ

where ~l is the magnetic moment vector and~d is the electric dipole
vector, both in the rest frame of the particle. Experimentally, no ele-
mentary particle has been found (Particle Data Group [6]) that car-
ries an intrinsic (rest frame) non-zero~d so we set this term to zero.

The first term thus becomes

2
3c3

€~l2
h i

! 2
3c3

1
2

d2Dlm

ds2

d2Dlm

ds2

" #
ð18Þ

Using

d
ds
¼ c

d
dt

ð19Þ

and

dc
dt
¼ c3~b � _~b ð20Þ

we get

2
3c3

€~l2
h i

! 2
3c3 c8 ~b � _~b

� �2
_~l2 þ 2c6 ~b � _~b

� �
_~l � €~l

� �
þ c4 €~l2

� �
ð21Þ

The remaining is the piece

d2ð~b�~lÞ
dt2 ¼ €~b�~lþ 2 _~b� _~lþ~l� €~l ð22Þ

so the second and final term in the instantaneous power emitted is

2
3c3

€~b�~lþ 2 _~b� _~lþ~b� €~l
� �2
� �

! 2
3c3

1
m2c2

d2 DmlPl
� 	

ds2

d2 DmkPk
� �

ds2

2
4

3
5 ð23Þ

Hence, the relativistic instantaneous power PMR radiated from a
magnetic dipole moment is
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PMR ¼
2

3c3

1
2

d2Dlm

ds2

d2Dlm

ds2 þ
1

m2c2

d2ðDmlPlÞ
ds2

d2ðDmkPkÞ
ds2

" #
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Working out the algebra gives the final answer

PMR ¼
2

3c3 c8 ~b � _~b
� �2

_~l2 þ 2c6 ~b � _~b
� �

_~l � €~l
� ��

þ c4 €~l2 þ c8ð~b � _~bÞ
2 _~b�~lþ~b� _~l
� �2

þ 2c6 ~b � _~b
� �

_~b�~lþ~b� _~l
� �

� €~b�~lþ 2 _~b� _~lþ~b� €~l
� �

þ c4 €~b�~lþ 2 _~b� _~lþ~b� €~l
� �2

�
ð25Þ

Eq. (25) is the relativistic magnetic dipole moment radiation
loss equivalent to the Liénard formula Eq. (2) for charged particles.

6. Electron synchrotrons

Eq. (25) can be applied immediately to electron synchrotrons,
using an example, the Cornell electron storage ring [8]. Electrons will
radiate magnetic dipole radiation in conjunction with their usual
charge radiation. Since the machine designers have not accounted
for the former, it must be truly tiny, even for large accelerators.

For circular machines (call the loss PC), the energy change per
revolution is small, so ~b � _~b! 0, and since _~l; €~l ’ 0, the only term
in Eq. (25) that is present is

PC ¼
2

3c3 c4 €~b�~l
h i2

ð26Þ

Now

€~b
��� ��� ¼ x _~b

��� ��� ð27Þ

and assuming perpendicularity between €~b and ~l

PC ¼
2

3c3 c4~l2x2 _~b
��� ���2 ð28Þ

The acceleration j~aj ¼ v2

r ’ c2

r where r is the radius of the synchro-
tron. Thus _~b

��� ��� ffi c
r. With x ¼ c

r, the radiative energy loss per revolu-
tion dE is

dE ¼ 2pr
c

PC ¼
4p
3

c4~l2=r3 ð29Þ

Expressing the energy loss per revolution in MeV ; dEðMeVÞ, we find

dEðMeVÞ ¼ 1:328� 10�32 E½Gev�4

r½meters�3
ð30Þ

where the beam energy E½GeV � is expressed in GeV and the acceler-
ator radius r½meters� is expressed in meters. For the Cornell
machine, E½Gev� ’ 12 and r½meters� ’ 122 giving

dEðMeVÞ ¼ 1:51� 10�34 ð31Þ

which, indeed, is completely ignorable.

7. The generalized neutron/neutrino force equation

Though the solar neutron problem and the electron synchrotron
problem have vanishingly small radiative dipole power losses, we
will see that cosmological neutrinos in the early universe may dra-
matically cool down from this mechanism. To do the calculation,
we must have the generalization of the non-relativistic force equa-
tion and the non-relativistic torque equation. Of the two general-
izations, the former is trivial and the latter complicated.

Introducing the velocity 4-vector Ul

Ul ¼ ðcc; c~vÞ; Ul ¼ ðcc;�c~vÞ ð32Þ
and the gradient 4-vector @l

@l ¼ @

@ct
;�r


 �
ð33Þ

the generalization of Eq. (9) is

m
dUl

ds
¼ @lQ ð34Þ

where m is the invariant rest mass and

Q ¼ 1
2

Fab0Dab ¼ �~l �~B0 ¼ �~l � cð~B�~b�~EÞ � c2

1þ c
~bð~b �~BÞ

� �
ð35Þ

We will need the expression d~b
ds so reducing Eq. (34) gives

d~b
ds
¼ �~b

cmc2
_Q �

~rQ
cmc

ð36Þ
8. The generalized neutron/neutrino moment equation

We have to generalize Eq. (12) to make it covariant. The result-
ing equation for charged particles [1] is the Thomas [9]–Bargmann
[10]–Michel–Teledi equation. For want of a better name, the neu-
tron/neutrino equation we need will just be called the neutrino
moment (NM) equation. We follow [1].

The relativistic spin in the rest frame will be denoted by~s and
the spin in the laboratory frame denoted by Sa, where this relativ-
istic spin is an axial 4-vector. Recall that spin is an intrinsic quan-
tum operator where the value of g in ~l ¼ ge

2mc
~s has a quantum

origin. In particular, the quantum 3-spin ~R satisfies ½Rk;Rl� ¼
i�klmRm. Because the quantum origins of g may preclude a direct
evaluation from first principles (e. g. the anomalous g value of
the nucleons), the relativistic formalism finesses the possible
unknown value of the g term, by making it a parameter. The rela-

tionship between~s and S
!

is [1]

~s ¼ S
!� c

1þ c
ð~b � S
!Þ~b ð37Þ

where Sa satisfies

UaSa ¼ 0 ð38Þ

As given in [1], the possible covariant terms for the time evolution
of Sa is

dSa

ds
¼ A1FabSb þ

A2

c2 ðF
klSkUlÞUa þ A3

c2 Sb
dUb

ds

 !
Ua ð39Þ

Multiplying Eq. (39) by Ua and using Eq. (38), we determine that
A1 ¼ A2 and A3 ¼ �1. Since Eq. (39) must reduce to Eq. (12) when
~v ¼ 0, then A1 ¼ ge

2mc and we obtain the covariant equation

dSa

ds
¼ ge

2mc
FabSb þ

Ua

c2 ðF
klSkUlÞ

� �
� Ua

c2 Sk
dUk

ds

 !
ð40Þ

We process this equation, eventually obtaining an equation for the
d~l
dt

d~s
dt
¼ ge

2mc
~s� ~B� c

1þc
ð~b �~BÞ~b�~b�~E

� �
þ c

1þc
~s� ~b�d~b

ds

 !" #
ð41Þ

finally giving the NM equation

d~l
dt
¼ u~l� ~B� c

1þ c
ð~b �~BÞ~b�~b�~E

� �
þ c

1þ c
~l� ~b� d~b

ds

 !" #

ð42Þ
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Fig. 1. Parameter space for 1 MeV/s radiation emission.
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where d~b
ds is given by Eq. (36) in conjunction with Eq. (35). In Eq. (42),

u is the constant in ~l ¼ u~s so

u ¼ ge
2mc

ð43Þ
9. Cosmological neutrino energy loss

We already know that non-negligible magnetic dipole radiation
loss from individual elementary particles requires magnetic field
strengths comparable to those found in neutron stars. Early uni-
verse cosmological neutrinos that decouple from matter at temper-
atures kT ’ 2.6 MeV [4] have energy 3

2 kT ’ 3.9 MeV giving a
c 	 3:9 � 106 (since mm � 1 eV) with fluctuating magnetic field
strengths j~Bj > 4:4 � 1013 G [3,4]. In this section, we estimate
their power loss after they decouple from matter.

The key is the existence of the c8 terms of Eq. (25). For decou-
pling neutrinos, with c > 106, these terms convey an enormous
> 1048 enhancement. Even still, there needs the presence of fluctu-
ating magnetic fields of neutron star strength, to overcome the
small neutrino magnetic moment lm, value given by the Particle
Data Group [6]

lm < 0:32� 10�10lB ð44Þ

where lB is the Bohr magneton. The Standard Model allows a mas-
sive Dirac neutrino to possess a tiny magnetic dipole moment [11]
’ 3 � 10�19ðmm=eVÞlB where mm is the neutrino mass in eV. How-
ever, most extensions of the Standard Model predict anomalous
magnetic dipole moments that approach the experimental limit
given by Eq. (44). For example, reference [12] gives an extension
of the minimal supersymmetric standard model by including a vec-
tor-like leptonic generation which arises in many grand unified the-
ories and string models. This leads to neutrino magnetic dipole
moments many orders of magnitude larger than the Standard
Model prediction and a clear signal for new physics.

From Eq. (42), as long as ~b is not parallel to the cosmological

magnetic field ~B, then d~l
dt is dominated by the first term of Eq.

(42), for large fields

_~l2 	 u2~l2~B2 ð45Þ
Characterizing the fluctuating cosmological field by its impact
on the neutrino by

_~b �~b 	 x ð46Þ

and making the parameterizations

j~Bj ¼ 10a Tesla; lm ¼ 10�xlB ð47Þ

with l2
B Tesla2 ¼ ½5:788 � 10�11 MeV�2 then

PCOSMOLOGICAL 	
2

3c3 c8ð~b � _~bÞ
2

_~l2
� �

� 2:19 x2102a�2xþ9 MeV=s ð48Þ

There are certainly regions, Fig. 1, of parameter space fa; x;xg
where the magnetic dipole moment radiation leads to fast neutrino
cooling.

10. Conclusion

It can be argued successfully that any physics associated with
magnetic moments is subtle: the electric charge is a Lorentz scalar,
whereas the magnetic dipole moment is a significant component of
a second order anti-symmetric tensor, ensuring complicated
dynamics. It was well known that ordinary magnetic fields cannot
lead to measurable magnetic moment radiation losses, but the
enhancement for relativistic particles was not anticipated.

Because cosmological neutrinos and anti-neutrinos are not
expected to mutually annihilate in the expansion of the universe
as do the charged particles, there would be an almost unlimited
number of neutrinos and anti-neutrinos surviving the Big Bang. If
these cosmological neutrinos and anti-neutrinos radiate energy
after they decouple from matter, and if this loss is a significant
fraction of their thermal energy, they can condense and be a com-
ponent of dark matter. Condensed neutrino matter would then
form the largest structures in the universe, dwarfing the visible
galaxies in size and mass. This paper outlines a viable cooling
mechanism that allows such a scenario.

Further work requires a detailed simulation of neutrino primor-
dial density fluctuations in concert with a full electromagnetic
treatment of early universe magnetic field generations in order
to answer the question of neutrino condensation timelines.
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