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Structure of 3He
P. D. Morley

Using electron scattering data, the diffraction pattern off 3 He shows it to be an equilateral triangle 
possessing dihedral D 

3
 point group symmetry (PGS). Previous work showed that 4 He is a 3-base 

pyramid with C 
3v

 PGS. 6 Li is predicted to have C 
2v

 PGS. As nuclear A → large, atomic nuclei enter into 
the ‘protein folding problem’ with many possible groundstate PGS competing for lowest energy.

High energy elastic electron scattering off nuclei reveal diffraction patterns that characterize the internal nuclear 
structure. Using the diffraction data of1,2, reference3 showed that 4 He is a 3-base pyramid, having C 3v PGS. This 
finding is fatal for the nuclear shell model that posits mean-field theory and a (1s)4 configuration (literally 
a sphere) for the α-particle. In reality, the atomic nucleus is a true many-body system, where each nucleon 
wavefunction depends critically on the position and spin of every neighbor. It can be argued that the many 
decades-old 3 He scattering data of1,2 (recently joined by the data of4 which agrees with the original data) is the 
most enigmatic nuclear scattering data ever obtained. Point group symmetry of small A nuclei is the key to the 
atomic nucleus. There exists Nuclear Physics Laboratories that have a Mission Statement to derive the atomic 
nucleus from Quantum Chromodynamics. After several decades of existence, they have not fulfilled their Mis-
sion Statement. This paper addresses some of their physics.

The experimenters themselves have compared the 3 He data to phenomenological theories and the reader is 
invited to see their short-comings. None of the published papers conceived that A = 3 nuclei have PGS, much 
less being an equilateral triangle. Reference5 introduces three 2S 1

2
 , three 2P 1

2
 , one 4P 1

2
 and three 4D 1

2
 states that 

have specific wavefunctions chosen for their analytical tractability and physical plausiblity. Even so, the author 
had to exclude a region of configuration space in order to establish a ‘hole’. The author calls this ‘a three-nucleon 
repulsive core’. Technically, this paper has physics errors because it has cross-terms between the different irreduc-
ible representations of S3 . The final paper reviewed here is the calculation6 of the 3 He form factor in the meson-
exchange model. In the authors’ words: ‘The charge form factors show a striking disagreement with experiment: 
the theoretical momentum transfer at the first minimum is too high and the height of the second maximum is 
too low.’ In addition, the famous ‘hole’ in the charge distribution for r = 0 is not reproduced. Of course, the 
meson-exchange model has other issues beyond the A = 3 system, but they will not be discussed. This concludes 
the short literature review. Here it is shown that 3 He is an equilateral triangle.

We calculate the charged form factor, F̃ch , which in one-photon exchange, is

The nuclear charge density ρ(r) for 3He need not be spherically symmetric. The charge density for point nucleons 
is ( τ3i is the z-component isospin operator for nucleon numbered i)

Since the proton itself has charge density ρp(r) , then ρ(r) is the convolution

and now

where F̃pt(q2) is the charge form factor using point nucleons and Fq(q2) is the Fourier transform of ρp which is 
the familiar dipole form factor7 (1+ q2(.054842fm2))−2 . Experimentalists normalize the charge form factor by 
Fch = F̃ch/Z (Z = nuclear charge) so the normalized Fch(0) = 1 ; we will call the normalized charge form factor, 
‘the charged form factor’.

(1)F̃ch(q
2) =

∫

ρ(r)
sin qr

qr
d3r

(2)ρpt(r
′) =

∫

�∗
pt

3
∑

i=1

1

2
(1+ τ3i)δ

3(r′ − ri)�ptd
3r1 . . .

(3)ρ(r) =
∫

ρpt(r
′ − r)ρ(r′)d3r′

(4)F̃ch(q
2) = F̃pt(q

2)Fq(q
2)
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We now construct �pt(r1, s1, t1, . . .) in which we indicate the position, spin and isospin variables. The S = 
1/2, T = 1/2 supermultiplet has symmetry group S3 irreducible representations (IR), due to the Pauli Principle. 
Furthermore, as explained below, Quantum Chromodynamics (QCD) requires that groundstate nuclei have 
PGS. The vertices of the lattice in the center-of-mass system are (c is the base)

If η = c/(2
√
3) , the triangle is equilateral. The orientation of the lattice plane is immaterial, because the point-

like charge density depends only on inner products ai · aj (due to the fact that the electron beam is not coherent). 
Using group theory8, the 3 He point wavefunction �pt is made up of the three different IR [ � ] of S3 : the spatial 
symmetric �S 1D [3], the spatial anti-symmetric �A 1D [13 ] and the mixed �M 2D [21].

In Eq. (6), the Ci are constants. The reason for the decomposition is that the QCD Hamiltonian has effective 
nucleon si·s j spin terms which mix the IR of S3 . For the basic spatial wavefunction, we take the zero phonon 
harmonic oscillator (H.O.). The harmonic oscillator parameter is the zero point energy (which is related to the 
Uncertainty Principle) of the nucleon in the atomic nucleus. We define φ(r1, r2, r3) to be

where C = 1

α3/2
( 2
π
)9/4 and α is the H.O. length parameter. In Eq. (7), the ‘123’ only reference the spatial variables 

r1, r2, r3 . For simplicity of notation, hereafter, we put a1 ≡ a, a2 ≡ b, a3 ≡ c . The spin-isospin wavefunction 
ST(123) is

where χ(2) ↓ is nucleon 2 spin down, and τ(3) ↑ is nucleon 3 isospin up (a proton). We now construct the indi-
vidual wavefunctions of Eq. (6) by introducing the Young Tableau of Fig. 1 and the idempotent operators A , S 
which respectively are the antisymmetrizer and symmetrizer. 3 He has positive parity, with P the parity operator.

where

(5)
a1 =(0, 2η, 0)

a2 =(c/2,−η, 0)

a3 =(−c/2,−η, 0)

(6)�pt(r1, s1, t1, . . .) = CS�S + CM�M + CA�A

(7)φ(123) ≡ φ(r1, r2, r3) = C3

3
∏

i=1

exp[−(ri − ai)
2/α2]

(8)
ST(123) ≡

1

2
[χ(1) ↑ χ(2) ↓ −χ(2) ↑ χ(1) ↓]χ(3) ↑ ·

[τ(1) ↑ τ(3) ↓ −τ(3) ↑ τ(1) ↓]τ(2) ↑

(9)

�S =
1

2
(1+ P)S[φ(123)]A[ST(123)]

�A =
1

2
(1+ P)A[φ(123)]S[ST(123)]

�M =
1√
2
[�1�̃1 −�2�̃2]

Figure 1.   The standard Young Tableau generating the 2D IR of S3.
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It is important for the reader to understand that in the 2D IR of S3 , a transposition operator such as (23) 
becomes a matrix in the configuration space spanned by the Young Tableau and the physical wavefunction 
is the antisymmetric [13 ] component in the direct product of [21]⊗[21], Eq. (9). There are no cross-terms 
between the different IR in the calculation of Eq. (2). In conducting the research, one must construct master 
tables of matrix elements such as ST(132)τ32ST(213) = −1/4 and master tables of expectation values such as 
∫

φ(213)Pφ(321)δ3(r′ − r2)d
3r1d

3r2d
3r3 = C2exp{−[(r′ − a)2 + (r′ + b)2]/α2}exp{−(b+ c)2/2α2}exp{−(a + c)2/2α2} . 

Altogether, there are 36 + 36 + 192 terms in Eq. (2). The results in Fig. 2 are in good agreement with experiment, 
considering the one-photon scattering approximation and the neglect of neutron scattering.

In Table 1, we give the PGS parameters for 3 He and 4He. Basically, the extra nucleon in 4 He sits on a with-
drawn equilateral triangle base of 3He. This is understandable because of the existence of a 4-body force in 4He, 
discussed below. The radial (scalar) point nucleon nuclear density is

which is displayed in Fig. 3. We see 3 He has a ‘hole’ at the center. Finally, we calculate the root-mean-squared 
RHe mass radius of 3He, which is

This is done by assembling a master table of expectation values, such as 
∫

φ(132)
∑

3

i=1
r2i Pφ(321)d

3r1d
3r2d

3r3

= exp{−(1/2α2)([b+ c]2 + [a + c]2 + [b+ a]2)}[ 9
4
α2 + ( a−c

2
)2 + ( a−b

2
)2 + ( b−c

2
)2] . The mass radius is the 

physical extent of the wavefunction (size of nucleus).
The atomic nucleus is the solution of the N-quark low energy semi-relativistic Hamiltonian. For N=3, 

reference9 solved for the complete Jπ N, � family using the 2-body charmonium potential10. (Recently, four-quark 
matter has been found, and it is anticipated it may have a PGS shape11. This further substantiates the Charmo-
nium potential.) Kiefer was able to predict the known N, � Jπ states and all the known photon decay amplitudes 
for transitions to the nucleon groundstate. Reference12,13 solved the N = 6 quark problem and showed that the 
physical deuteron was due to quark-exchange Feynman diagrams. Reference14 showed that the quark-exchange 
forces give rise to effective nucleon-nucleon potentials. Reference15 showed that QCD has 2-, 3-, 4-body quark 
exchange forces. Finally, reference16 was able to concatenate the N-quark Hamiltonian into a nuclear code. This 
showed that the atomic nucleus groundstate has PGS, while excitations are coherent (keeping the nuclear bonds 
intact: rotations and vibrations) and incoherent (breaking the nuclear bonds). The saturation of atomic forces is 
due to the fact that nucleons have only three quarks to exchange: the four-body quark exchange force, due to the 
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Figure 2.   Equilateral triangle scattering of 3He, using the one-photon approximation and neglecting neutron 
scattering.
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gluon 4-body interaction, is the strongest binding mechanism for the atomic nucleus, reference16. The nuclear 
code can be expanded to predict groundstate spins, by noting that the 2-body, 3-body bonds are spin-dependent. 
For example, the binding energy of the A = 6 nucleus is E(6) = E4 + 2E3 + 4E2 , where Ei are the binding ener-
gies of the i-body bonds, so the E2 spins cancel, leaving 2E3-spins ( Jπ = 1+ ). Similarly, E(7) = E4 + 3E3 + 4E2 , 
with the E2 spins canceling leaving 3 E3 spins ( Jπ = 3

2

−).
The key quantity allowing the nuclear interactions to occur is the overlap of nucleon wavefunctions in the 

atomic nucleus. There are two radii for the nucleon: the electromagnetic and the mass. For the nucleon in the 
S = T = 1/2 state, the former radius-squared is r2Q−N

which is a negative value for the neutron. Physically speaking, the electromagnetic radius measures the internal 
charge distribution while the mass radius rM

measures the physical size. In realty, the neutron mass radius and the proton mass radius are nearly identical in 
value because the gluons in Quantum Chromodynamics do not couple to electric charge. The mass radius of the 
nucleon is9 ∼ 1.38−1.40 fm, showing that the atomic nucleus has overlaping nucleon wavefunctions, allowing 
QCD color interactions to occur between colorless hadrons. An important experiment that can be conducted is 
high-energy elastic scattering off 6Li, which is predicted to have C 2v PGS, reference16. However, as the nuclear 
A → large, it becomes very difficult to ascertain the geometry of the groundstate wavefunction, the ‘protein 
folding problem’. For large A nuclei, one must consider that the Jahn-Teller effect17 may appear, changing the 
assumed PGS.
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Figure 3.   Scalar charge density of 3He, showing the ‘hole’ at the center.

Table 1.   PGS comparison 3 He with 4He.

PGS parameters/results 3He 4He

% Spatial antisymmetric None discernable None discernable

% Spatial symmetric 15.99 13.6

% Spatial mixed 84.01 86.4

α2 H.O. (fm2) 0.644327 0.644327

3-Base length (fm) 1.341

Equilateral length (fm) 1.61

Mass radius (fm) 2.023 1.79
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